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Abstract 

Background 

More than 131 million SARS-CoV-2 cases had been confirmed globally as of April 2021. There is a need 

for effective and accessible treatments for SARS-CoV-2. Repurposing drugs already approved for other 

indications may provide a rapid alternative to de-novo drug development.  

Methods 

We conducted searches for preclinical studies (in vivo, in vitro and in silico) and other publication types 

(e.g. systematic reviews, editorials, and opinion pieces) assessing drugs that could potentially be 

repurposed for SARS-CoV-2. Studies of drugs already in human trials or approved for use for SARS-

CoV-2 were excluded. We produced an evidence map and narrative synthesis surrounding the most 

promising candidates for specific mechanisms of action, based on the best level of evidence. 

Results 

We identified 530 eligible studies, the majority of which were in silico studies (N = 242). Based on the 

best level of evidence and reporting by study authors: eight drugs were identified as having potential 

to inhibit SARS-CoV-2 entry into host cells; 11 were identified as potential inhibitors of spike protein 

attaching to host cells; one as possibly preventing viral entry into host cells via the ACE2 receptor; 

eight as potential inhibitors of viral replication; four as potentially being able to target SARS-CoV-2 

RdRp; three as possible inhibitors of SARS-CoV-2 Mpro; and two as potential inhibitors of the SARS-

CoV-2 cytopathic response and immune system effects. 

Conclusions 

Thirty-seven therapeutic agents with potentially promising effects on SARS-CoV-2 were identified. 

However, further well-designed preclinical and clinical research is needed to establish their efficacy. 
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Background 

Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) threatens public health at 

a global level, with more than 131 million confirmed cases globally (as of 06 April 20211). Given the high 

infectivity of this virus, and the fact that one in five people infected are hospitalised with serious health 

consequences, it is vitally important to address how to improve treatment practices.2 There are currently 

few approved medications for treating SARS-CoV-2,3,4 however, a range of drug therapies are being 

trialled to test their efficacy and safety.5 The treatments currently being evaluated range from those that 

target virus entry, replication or shedding (the life cycle of SARS-CoV-2), to those which reduce 

pulmonary effects, inflammation or cardiovascular effects.5-10 

At least seven vaccines are now in use for immunisation against SARS-CoV-2 infection. Mass vaccination 

started in December 2020 and, as of 15 February 2021, 175.3 million vaccine doses had been 

administered globally. Nevertheless, the impact of COVID-19 vaccines on the pandemic is dependent 

upon the effectiveness of the vaccines; how quickly they are approved, manufactured, and delivered; the 

possible development of other variants; and how many people get vaccinated.11 Furthermore, there is 

still a pressing need for more effective treatments for the long-term health impacts of SARS-CoV-2. 

Due to the need for effective and accessible treatments for SARS-CoV-2, there have been specific efforts 

to repurpose or reposition approved and established drugs. This approach to identifying medications 

leads to a shorter drug development cycle than experimental drug development and only requires 

upscaling of established production processes rather than generation of de novo systems.12 As generics 

of repurposed or repositioned drugs are often instantly available, the cost of drugs developed in this 

way tends to be lower.12 

There is a burgeoning and disparate literature on repurposed or repositioned drug candidates for 

treating SARS-CoV-2 (from reduction in virus levels to recovery and rehabilitation). In October 2020, a 

mapping review was completed which provided an overview of evidence from hypothesis driving and 

preclinical studies that identified possible SARS-CoV-2 treatment candidates for clinical trial testing. In 

this review update, we incorporate additional findings from new studies published up until February 

2020, that were not included in the earlier review.  

Aim and objectives 
Our aim is to give an up-to-date evidence overview of the drug repurposing research landscape in 

relation to SARS-CoV-2, and to identify the most plausible treatment candidates for trial as of February 

2021. 

To achieve this aim, our objectives are as follows. 

1. To identify any hypothesis driving studies for SARS-CoV-2 (e.g. use of computational drug 

discovery for repositioning) that summarise potential repurposed drug candidates 

2. To identify any drug library screening studies (including high throughput screening studies 

or virtual, in silico drug screens) that summarise potential repurposed drug candidates 
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3. To identify any in vitro and in vivo studies that summarise potential repurposed drug 

candidates for clinical trials 

4. To produce a narrative synthesis and map of potential repurposed drug candidates for clinical 

trial, critically appraising the level of evidence indicating each as a potential candidate 

Methods 

Inclusion and Exclusion Criteria 

Study design 

We included the following studies: in vitro studies; in vivo in animal models including non-human 

primates; and drug library screens identifying repurposed therapeutic agents targeting SARS-CoV-2 

(including high throughput screening studies or virtual, in silico drug screens), in addition to systematic 

and scoping reviews of these studies. We also included studies describing potential adverse effects of 

the identified candidate drugs, in addition to those describing potential therapeutic effects. Reviews, 

letters, editorials, and commentaries were included if they fulfilled the other inclusion criteria. At 

citation screening stage, we included studies where the title or abstract did not mention specific 

candidate drugs but instead only a candidate drug category or repurposing/repositioning for SARS-

CoV-2. If the full text studies did not identify a specific drug, these studies were excluded. 

We coded for but excluded any preclinical, in vitro, in silico and high-throughput studies where the 

candidate drug (or drugs) of interest are now being evaluated in humans (i.e. within randomised 

controlled trials, controlled clinical trials, cohort studies, case studies, cross-sectional studies and case-

control studies), or which are now in human use for SARS-CoV-2. In addition, we coded for, but did not 

include non-English language studies. Coding for but not including these studies allows us to estimate 

the number of potentially relevant studies excluded from the review and allows for full assessment 

later if indicated. 

Any studies on human participants were excluded. Otherwise, we did not restrict by animal models, cell 

line, cell culture or by the type of high-throughput screen or in silico/computational approaches in the 

studies reviewed. To be included a study must have focused on candidates for treating SARS-CoV-2 or 

its resultant physical morbidities. 

Interventions 

We included off-label drugs, vitamins and dietary supplements that have been approved by established 

regulatory authorities recognised by the International Coalition of Medicines Regulatory Authorities and 

could potentially be used in treating the SARS-CoV-2 infection or its resultant physical morbidities. 

Approval for indications other than SARS-CoV-2 was identified using the British National Formulary 

(BNF), US Food and Drug Administration (FDA), European Medicines Agency (EMA), Electronic Medicines 

Compendium (EMC) and GlobalData, using their respective websites. Both individual and combination 

therapies were included.  

The following were excluded from the review: 
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 Studies identifying biological targets for treatment (e.g. a disease pathway that could be 

modulated) but no candidate drug 

 Pre- and post-exposure prophylactic (preventative) interventions (e.g. SARS-CoV-2 vaccines and 

face masks) 

 Complementary or alternative medicines 

 Diagnostic tools (e.g. chest x-rays) 

 Non-drug treatments (e.g. equipment and SOPs such as ventilator protocols, patient 

management techniques) 

 Treatments involving gases (e.g. oxygen, hydrogen, nitrogen, mixed gas treatments) 

 Any treatments already being used for treating SARS-CoV-2 patients in clinical trials or in practice 

(e.g. convalescent plasma therapy) 

Main Outcome(s) 

To be eligible for inclusion, the record had to identify at least one drug candidate as a potential treatment 

for SARS-CoV-2 infection or resultant physical morbidities. We excluded papers identifying candidate 

drug(s) for treating the mental health impacts of SARS-CoV-2. 

Mechanisms of Action 

Where reported within included records, we extracted data on the mechanism of action (MoA) or the 

World Health Organization (WHO) Anatomic Therapeutic Chemical classification (ATC) for each 

identified drug candidate. Extracted data was coded to our pre-defined categories (including 

‘miscellaneous’ MoAs) with expert input if required (from either SA, FZ, AW or DO). Where the MoA was 

reported too vaguely for identification or not described at all candidate drugs were coded as ‘not 

reported’. 

We also consulted experts to validate the plausibility of each identified candidate drug for treating SARS-

CoV-2 or SARS-CoV-2-induced physical morbidities. 

Search Strategy 

We performed the updated search on 12 February 2021 using three databases: the SARS-CoV-2-specific 

COAP Living Evidence on COVID-19 (includes pre-prints); Embase (1996 to 2021 week 05); and Scopus 

(2019 to February 2021). Full details of the search terms used for each database can be found in Appendix 

A. We present the flow of literature throughout the process and the results of the search using a PRISMA 

diagram.13 Retrieved studies were downloaded into an Endnote X9 library and de-duplicated. 

Data extraction (selection and coding) 

De-duplicated titles and abstracts were uploaded to a Rayyan14 screening library and screened 

independently by two reviewers (LT and EJ) in relation to the inclusion and exclusion criteria, with 

advice from a third reviewer where required (FP or AW).  

Due to time constraints in the earlier review, only records that reported candidate drugs not in clinical 

development or in use for the treatment of SARS-CoV-2 in the title or abstract were included in the full 
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text screen. Any studies not reporting a relevant drug in the title or abstract were filed separately 

awaiting classification. A scoping exercise indicated that 60% of these filed records reported eligible 

drugs in their full text. Consequently, in the review update reported here, we included records 

regardless of whether they explicitly reported relevant drugs in their title or abstract, if they otherwise 

fit eligibility criteria. This included incorporating the studies that were previously filed as not reporting 

drug names in their title or abstract as relevant. Discrepancies in screening decisions were resolved 

through discussion between reviewers (LT and EJ) and adjudication if needed by a further reviewer (FP).  

The full texts of potentially relevant records were screened using the same method (in duplicate by EJ 

and either LT, SA or FZ) and with adjudication if needed by a further reviewer (either FP or LT as 

appropriate). For the initial review, records were screened by reviewers with a background in evidence 

synthesis (LT and EJ) and an expert in drug development (AW) independently screened 10% of titles 

and abstracts to allow us to estimate the accuracy of screening decisions made by the review team. For 

the 2021 update, reviewers with a background in evidence synthesis (LT and EJ) and reviewers with a 

background in pharmacy (SA and FZ) undertook the full-text screening. 

The full texts of included studies were uploaded to EPPI-Reviewer web software tool,15 which was used 

for data extraction. We iteratively created a data extraction form within this software package, piloting 

it on a sample of included studies and refining as needed. For the original review, items on the data 

extraction form included the following: study citation; study design; candidate drug(s); in vitro or 

animal model (in vivo) tested; MoA or ATC classification; primary outcomes reported; descriptive list of 

known adverse events or toxicity; and conclusions (e.g. subset of drugs identified as being most 

promising amongst those listed). For the updated review, we did not extract information on outcomes 

reported other than candidate drugs, descriptive list of known adverse events or toxicity, 

pharmacodynamics or pharmacokinetics of the drugs. Data were extracted by one reviewer (out of LT, 

EJ, SA, FZ and RPWK) with 10% of studies extracted checked for accuracy and completeness by a 

second reviewer (out of SA and FZ). The opinion of a third reviewer (LT or EJ as appropriate) was 

sought to resolve discrepancies in relation to the extracted data. 

Quality Appraisal 

For the original review, we had initially planned to use the Office of Health Assessment and Translation 

(OHAT) Risk of Bias Tool for Human and Animal Studies 16 and a quality assessment checklist 

developed for computational studies by Silva et al 17 to evaluate the level of internal validity of 

included studies. These tools were piloted on a small sample (5%) of studies identified by the original 

search strategy (October 2020). A high level of items assessed by the tools were not reported in 

sufficient detail in each study assessed to make an informed judgement on whether they would 

introduce bias or not. The tools were thus unable to discriminate between high- and low-quality 

studies amongst those included in this review. Given this, planned quality assessment was not 

undertaken. However, we synthesised results preferentially from studies rated higher in the drug 

repositioning evidence level (DREL) with amendment (Table 1),18 which grades each drug repositioning 

candidate according to the level of scientific evidence available. 
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Strategy for data synthesis 

We present a narrative synthesis of results indicating the amount and quality of evidence available. We 

used a ‘best available evidence’ approach to synthesise the data from the available studies.19 Using this 

method, for each MoA the highest level of available evidence is reported and, when data from the 

highest level of evidence were unavailable, the next level of evidence was referred to. The levels of 

evidence applied to this synthesis were an adapted version of the DREL criteria,18 which grades drug 

repositioning candidates according to the level of scientific evidence available (Table 1). Non-

experimental studies are lowest in the hierarchy, with increased position in the hierarchy for studies 

using models that are more applicable to humans. We also considered the reliability of the study 

design, with systematic reviews considered superior to individual studies. Scoping reviews which 

included some documentation of their methods, such as the search strategy used to locate primary 

evidence, were considered at the same level as full systematic reviews. 

Table 1: Hierarchy of evidence used in this review (based on DREL criteria)18 

Level of evidence Type of study 

1a Systematic reviews of in vivo studies 

1b Primary in vivo studies 

2a Systematic reviews of in vitro studies 

2b Primary in vitro studies 

3a Systematic reviews of in silico studies 

3b Primary in silico studies 

4 Non-research studies, including commentaries, opinion pieces, 

editorials and non-systematic reviews 

 

No statistical analysis was planned. Rather, we produced a visual map indicating the volume and type 

of research indicating each drug as a most likely trial candidate and highlighting the MoA listed by 

study authors for each indicated candidate drug or, where no MoA was reported, as identified by an 

expert in drug development (AW or DO). 

Results 

After deduplication, 2383 records were identified from the searches. Following title and abstract 

screening, 716 records were judged to be relevant and were screened based on full text, where 

available. Of these, we excluded 180 records. Most records were excluded for breaching multiple 

inclusion criteria. The first noted exclusion reason for each record was as follows: 145 did not report a 

relevant drug; four investigated the wrong outcome; 23 did not use an eligible study design; full texts 
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were unobtainable for three records; one article was not published in English and four additional 

duplicates were identified.  

The flow of literature is detailed in the PRISMA13 diagram (Figure 1).  

Figure 1: PRISMA13 flow diagram depicting the flow of included and excluded studies through 

the systematic review process.  

 

Description of included studies 

The designs of the 530 included studies were varied and are summarised in Table 2. In brief, one study 

(0.19%) was purely in vivo, 52 were purely in vitro (10%) and 244 were purely in silico (46%). One 

hundred and eighty-nine papers (35.6%) were classified as being another design; details of these are 

documented in Table 2. Forty-four papers (8.1%) incorporated more than one design; details of design 

combinations are also presented in Table 2. 
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Table 2: Designs of papers included in this review 

Design Number 

Preclinical designs 

In vivo 1 

In vitro 54 

In silico 242 

Other designs 

Research stakeholder insights 83 

Non-systematic secondary research 96 

Systematic secondary research 10 

Combinations 

In vivo and in vitro 4 

In vivo, in vitro and in silico 1 

In vitro and in silico 26 

In vitro and other 4 

In silico and other 9 

 

The primary cells, cell lines, tissues and virus strains used in the in vitro studies varied greatly and are 

summarised in Table 3. The most used cell-line across all studies was Vero E6. Nine studies used in 

vitro methods which either did not report or utilise primary cells, cell lines, cell culture, tissues or virus 

strains.20-28 One study used A549 cells supplemented with a vector expressing ACE2, Calu-3 cells, and 

NHBE cells as well as two lung samples derived from COVID-19 patients compared against two healthy 

lung tissue biopsies.29 Another study performed GRP78 gene expression studies in the blood of SARS-

CoV-2 (+) versus SARS-CoV-2 (−) pneumonia patients.30 

Table 3: Primary cells, cell lines, tissues and virus strains used in in vitro studies 

Originating 

organism 

Originating 

tissue 

Primary cells, Cell lines, 

Virus strains 

Study ID 

Human Lung  A549  Abdulla 2020;54 He 2020a;37 Kim 2021;38 Li 

2020a;61 Mousavi 2020;57 Pickard 2021;36 

Scroggs 202062 

A549-Ace2 cells Meyer 2020;85 Puhl 2020;99 Rajasekharan 

202086 

Calu-1 Ramirez 202050 

Calu-2 Ko 202043 

Calu-3 Biering 2020;88 Busnadiego 2020;41 Cagno 

2020;89 Chen 2020b;96 Choi 2021;63 

Holwerda 2020;90 Stone 2021;91 Swaim 

2020;92 

Le 2020;42 Pickard 2021;36 Puhl 2020;99 Wong 

2021;40  

HCC515;  He 2020a37 

HLF(CCD-19Lu); Pickard 202136 

MRC5 Raymonda 2020;55 Rietdijk 202156 

HPAEpiC Lin 202051 
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Bronchus HBEC;  Hsu 202049 

16HBE 140 Pickard 202136  

NHBE Mousavi 202057 

Colon 

Epithelium 

Caco-2  Choi 2021;63 Pickard 2021;36 Puhl 202099; 

Schultz 2020;39 Touret 202098 

HCT-8 Yang 202046 

Cervix HeLa expressing human 

SARS-CoV-2 receptor 

Bakowski 202047 

HeLa-ACE2 Gawriljuk 202048 

Liver Huh7 Chen 2020b;96 Pickard 2021;36 Puhl 2020;99 

Ramirez 2020;50 Rajasekharan 2020;86  

Huh7-hACE-2  Milani 202087 

Huh7.5 Ramirez 202050 

HepG2 Choi 202163 

Kidney Ab Podocytes; Hk-2; 

PODO/TERT256;  

Pickard 202136 

Embryonic 

Kidney 

HEK-293 Al-Motawa 2020;32 Mahdi 202031 32 

HEK-293-T Pickard 2021;36 Rajasekharan 2020;86 Zhang 

2020c33 

ACE2 high expressing HEK-

293-T 

Le 2020;42 Lu 2021;34 Reznikov 202035 

Spleen CRL-8155;  Choi 202163 

Bone HTB-96;  Rajasekharan 202086 

Skin Hacat; HFF-1 Pickard 202136 

Umbilical 

Vein 

HUVECs Ferraro 202052 

Blood 

 

THP-1 Wang 2020a58 

THP1 Pickard 202136 

SW1353; TC28a;  

 

 

Pickard 202136 

Primate Kidney Vero E6  

 

 

 

 

 

 

 

Busnadiego 2020;41 Ko 2020;43 Pickard 

2021;36 Xiao 202053  

Alnajjar 2020;64 Biering 2020;88 Bobrowski 

2021;65 Cagno 2020;89 Chen 2020b;96 Cho 

2020;66 Choi 2021;63 Clarke 2020;67 Fan 

2020;68 Ginez 2020;69 Gorshkov 2020;93 

Guimond 2020;70 Gupta 2021;71 Holwerda 

2020;90 Huang 2020;72 Hung 2020;73 Konrat 

2020;94 Kuzikov 2020;74 Li 2020a;61 Meyer 

2020;85 Milani 2020;87 Mostafa 2020;75 

Olaleye 2020;76 Pathak 2020;77 Puhl 2020;99 

Rajasekharan 2020;86 Ramirez 2020;50 

Scroggs 2020;62 Stone 2021;91 Straus 2020;78 

Swaim 2020;92 Touret 2020;98 Verma 2020;79 

Vuong 2020;80 Wan 2020;97 Xing 2020;81 

Yuan 2020;82 Zhang 2020b;83 Zhou 2020a84  
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Vero E6 selected for high 

ACE2 expression 

Chen 2020a95 

Vero 76 Puhl 202099 

LLC-MK2  Gorshkov 202093 

Mouse Blood RAW264.7 Wang 2020a58 

Brain SIM-A9 Wang 2020a58 

Hamster Kidney BHK-21; BSR-T7 Wan 202097 

E.coli N/A TOP10cells Vatansever 202044 

Lemo21 (DE3) cells Eberle 202045 

SARS-CoV-

2 

Papain-like 

protease 

PLpro mutant C111S Gao 202159 

Feline Type II 

coronaviruses 

NTU156 Ke 202060 

Only one study was a purely in vivo design100, which used male C57BL/6 J mice (1822 g) as its model 

organism. 

The studies that combined an in vivo and in vitro approach similarly utilised different cell lines and 

animal models; these are summarised in Table 4.  

Table 4: Primary cells, Cell lines, Virus strains and Animal models used within 

combined in vitro and in vivo studies 

Study ID Primary cells, Cell lines, 

Virus strains 

Animal model 

Cicka 2021101 Vero E6-TMPRSS2 SARS-CoV-2 mouse model 

and SARS-CoV-2 rhesus 

macaque model 

Han 2020c102 Infected lung organoids Humanized mice carrying 

hPSC-derived lung 

xenografts after four months 

maturation in vivo 

Ho 2020103 A549-hACE2 Syrian Golden hamster 

model and 5-10 week old 

female B6.Cg-Tg(K18-

ACE2)2Prlmn/J (K18-hACE2) 

mice 

Weston 2020104 Vero E6; A549-hACE2 Mouse model (BALB/c mice) 

Zhou 2020a84 (also includes 

in silico design) 

Mouse cells Mouse model 

 

A narrative synthesis was undertaken. The results are presented below grouped by the MoA, as 

reported by study authors or pharmacy experts, through which drugs are indicated as exerting their 

potential therapeutic effect. The following MoA groups were used: inhibition of viral entry; inhibition of 

viral entry via ACE2 receptors; inhibition of viral cell attachment to SARS-CoV-2 spike protein; 

inhibition of viral replication; inhibition of main viral protease (Mpro); inhibition of viral RNA-

dependent RNA polymerase (RdRp); and inhibition of cytopathic and immune effects. 
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There were 29 papers where the MoA identified did not fall into any of the predefined categories. 
23,32,40,82,105-129  In addition, 20 papers did not clearly report the MoA. 57,66,101,113,124,127,128,130-142 These 

studies are included in the evidence map as having ‘Miscellaneous’ or ‘Not reported’ MoAs, 

respectively. Of these papers, 25 partially reported on MoAs giving information for some drugs they 

listed as most effective and not for other listed drugs or, reporting MoAs that did not fall into 

predefined category.23,32,57,108-111,113-116,118-123,125,127-130,138,140,142 For these 25 papers, we have only included 

the reported MoA or MoA that fell into one of the pre-defined categories and their drugs in the 

narrative synthesis. 

Box 1. Candidate drugs identified by study authors in the top DREL, in relation to each MoA 

Preventing SARS-CoV-2 viral entry into host cells 

Pixatimod (PG545), haloperidol, panobinostat, miglustat, hydroxyzine dihydrochloride, azelastine 

hydrochloride, pimozide, apatinib 

 

Inhibition of SARS-CoV-2 spike (S) protein from attaching to host cells 

Nilotinib, ingenol, NKH477 (colforsin), osimertinib, trimipramine, nifedipine, ceftazidime, ambroxol 

hydrochloride (AMB), cathepsin L inhibitor, monensin, promethazine 

 

Preventing viral entry into cells via the ACE2 receptor 

Topotecan 

 

Preventing viral replication 

Clomipramine hydrochloride, fluspirilene, gemcitabine hydrochloride, promethazine hydrochloride, 

terconazole, thiethylperazine maleate, toremifene citrate, benzotropine mesylate 

 

Targeting RNA-dependent RNA polymerase (RdRp), which regulates viral replication 

Homoharringtonine, pralatrexate, rituximab, tilorone 

 

Inhibition of SARS-CoV-2 main protease (Mpro) 

Pentobarbital, vorinostat (WT-171), phenazopyridine 

 

Inhibition of SARS-CoV-2 cytopathic response and immune system effects 

Imipenem, lapatinib 

 

 

Main Results 

Figure 2 maps the amount of evidence for each study design related to each mechanism of action. The 

number of squares shown indicate the number of included studies.  



   

 

   

 

Figure 2. An abbreviated map indicating volume (one square indicating one study) and types of study identifying repositioning drug 

candidates within each indicated mechanism of action 
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Inhibition of viral entry 

The SARS-CoV-2 surface spike protein binds to the host cell angiotensin-converting enzyme 2 (hACE2) 

receptor once proteolytically activated, mediating a further chain of cellular events that mediate SARS-

CoV-2 entry into the cell.143 Different proteases are also important for cell entry, including cleavage of 

the SARS-CoV-2 spike protein to ‘activate’ cell-cell fusion and/or virus entry. Examples include: 

Cathepsin L; Elastase; Plasmin; TMPRSS2; and Trypsin. Fusion peptides (smaller than proteins) can also 

interact and facilitate viral fusion with the host cell membrane.143 

Thirty papers assessed drugs for inhibition of viral entry.35,42,44,61,70,86,97,138,144-163 Four studies had an in 

vitro design, 35,36,70,86 while three other studies had both an in vitro and in silico design.42,44,97 Eleven 

studies had an in silico design.61,146-148,150,155,157,159-161,164 Twelve had another design.138,144,145,149,151-

154,156,158,162,163 

The six studies with either an in vitro or combination of in vitro and in silico designs provided the best 

level of evidence for this MoA.35,36,42,44,70,86,97 Guimond 2020 identified pixatimod (PG545),70 Le 2020 

identified haloperidol,42 Pickard 2021 highlighted panobinostat,36 Rajasekharan 2020 identified 

miglustat,86 while Reznikov 2021 noted hydroxyzine dihydrochloride and azelastine hydrochloride to 

be effective.35 Pimozide was the drug identified by Vatansever 2020 and, finally, Wan 2020 identified 

apatinib.44,97 

Inhibition of surface spike protein 

The SARS-CoV-2 surface spike (S) protein has two subunits: S2, which mediates the membrane fusion 

process; and S1, which utilises hACE2 as the receptor to infect human cells. Spike proteins assemble 

into trimers on the virion surface to form the distinctive “corona”, or crown-like appearance. Spike 

proteins are an integral part of the virus “infection” protein, fusing with the human host cell through 

the S1 subunit or S2 subunit via the hACE 2 receptor.143 

Forty-six studies identified possibly effective drugs that may inhibit the surface spike 

protein.23,51,56,76,79,89,96,110,114,125,130,131,138,142,150,152,155,165-193 No in vivo studies were identified. Two studies 

employed purely in vitro methods,56,76 while one used in vitro methods combined with another 

design.89 In addition, four in vitro studies also employed in silico methods.23,51,79,96 Twenty-nine studies 

used in silico methods.110,114,131,150,155,165-175,177-179,181-184,186,187,189-193 Two studies used both in silico 

methods and another design.130,142 Seven studies used another design.125,138,152,176,180,185,188 

As no in vivo studies were identified for this MoA, the in vitro studies provided the best level of 

evidence.23,51,56,76,79,89,96 In terms of the purely in vitro studies, Olaleye 2020 identified ambroxol 

hydrochloride (AMB),76 Rietdijk 2021 identified cathepsin L inhibitor.56 With regards to the studies that 

combined in vitro with in silico methods, Chen 2020b identified ingenol, NKH477 (colforsin), 

osimertinib and trimipramine.96 Verma 2020 identified both monensin and promethazine as potential 

inhibitors of surface spike protein.79 Hsieh 2020 identified nifedipine and Lin 2020 noted ceftazidime to 

be potentially most effective.23,51 Cagno 2020, which combined in vitro and other methods, identified 

nilotinib as a potential inhibitor of surface spike protein.89  
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Angiotensin-converting enzyme (ACE) interaction 

The main method of virus entry to the host cell, as has already been outlined, is by spike protein 

penetration, cell membrane fusion and injection of viral genetic material via the ACE2 receptor.143  

Thirty-three studies investigated drugs targeting this mechanism of action.20,103,119 Three of these 

studies used mixed designs: one used in vitro and in vivo methods;103 another study employed in vitro 

and in silico methods;20 and the third study involved combination of in silico and meta-analysis.119 A 

further seven studies used a purely in vitro design21,33,34,36,37,49,68 and eight studies used an in silico 

design only.111,155,167,171,172,190,194,195 The remaining eleven studies used other methods comprising two 

computational analyses of transcriptomic datasets,196,197 5 opinion pieces125,140,198-200 and eight narrative 

reviews.109,128,138,201-205  

The in vitro and in vivo study by Ho (2020) represented the top level of evidence for identifying drugs 

targeting the interaction between SARS-CoV-2 and the ACE2 receptor.103 This study reported that two 

doses of Topotecan, an FDA-approved Top1 inhibitor, suppressed infection-induced inflammation and 

reduced morbidity and mortality in mouse and hamster models.103  

Inhibition of RdRp 

RNA-dependent RNA polymerase (RdRp), which regulates viral replication, is proposed as a potential 

therapeutic target. This enzyme is involved in the replication and transcription of viral RNA, which 

becomes encased in viral proteins (as a capsule). Its inhibition arrests viral replication.143 

Thirty-one studies assessed drugs targeting the RdRp enzyme. Three studies used in vitro methods 

only27,53,83 and one study employed a mixed design, involving in vitro and in silico methods.72 One 

study was a scoping review of in silico studies,176 one study comprised molecular docking and a 

literature review152 and seventeen used an in silico design only.116,121,169,181,195,206-218 The remaining eight 

studies were non-systematic reviews.188,205,219-224  

The top level of evidence for this mechanism of action was provided by the three studies that used in 

vitro methods only27,53,83 and the study which used a mixed methods (in vitro and in silico) design.72 

The drugs identified by the authors of these studies as being most effective, ordered here 

alphabetically, were: homoharringtonine (investigated by Huang 2020);72 pralatrexate (identified by 

Zhang 2020b);83 rituximab (reported by Li 2021)27 and tilorone (highlighted by Xiao 2021).53 

Inhibition of SARS-CoV-2 main protease (Mpro) 

The SARS-CoV-2 main protease (Mpro), also known as 3CLpro, is an enzyme belonging to a group of 

proteases that are involved in the formation of viral proteins. It is one of the coronavirus non-structural 

proteins (Nsp5) designated as a potential target for drug development.143 Mpro cleaves the viral 

polyproteins, generating 12 non-structural proteins (Nsp4-Nsp16), including the RNA-dependent RNA 

polymerase (RdRp, Nsp12) and the helicase (Nsp13). Inhibition of Mpro would prevent the virus from 

replication and, therefore, constitute one of the potential anticoronavirus strategies.143 
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One hundred and twenty studies identified drugs in relation to this mechanism of action. Eight of 

these studies used in vitro methods only.26,30,31,57,64,77,81,225 Five studies used a combination of in vitro 

and in silico methods22,60,72,73,79 and one study used in vitro methods and presented a hypothesis.80 

Eighty-eight studies used in silico methods only;97,114,116,129,131,133,168,174,177,178,181,186,194,197,214,215,226-296 three 

studies used in silico in addition to other methods, which included testing a hypothesis regarding the 

molecular structure of Sars-CoV-2,297 meta-analysis of gene expression profile datasets in relation to 

different cell types,119 and a Bayesian approach to a systematic review.298 The remaining studies used 

other methods comprising a systematic review of in silico methods,134 non-systematic 

reviews44,120,152,162,188,205,299,300 and opinion pieces.125,199,200,222,301 

The top level of evidence was from the studies that used meta-analyses of gene expression profile 

datasets in relation to different cell types.119 The authors identified pentobarbital, vorinostat (WT-171) 

and phenazopyridine as potential inhibitors of SARS-CoV-2 Mpro.119 

Inhibition of viral replication  

There are six stages involved in viral replication, which include attachment, penetration, uncoating, 

replication, assembly and release. Specifically, the replication and assembly stages differ depending 

upon the type of viral genome (i.e. RNA or DNA). SARS-CoV-2 is an enveloped, positive sense, single 

stranded RNA virus. This RNA is used as a core template to produce both viral genomic RNA and 

mRNA. The latter of these instructs and directs the invaded host cell to produce and synthesise viral 

proteins and then to assemble the new virions. Firstly, once it has entered the host cell the viral capsid 

coat is removed by a series of enzymes, exposing the viral genomic material. Once exposed, the viral 

genomic material (RNA) enters various areas of the host cells (organelles, ribosomes, endoplasmic 

reticulum, etc.) and, via a process of protein synthesis (translation), produces amino acid sequences. 

Then, peptides and proteins are assembled to deliver both structural and non-structural proteins 

(enzymes) etc. New viral genomes are also produced by polymerase enzymes, which are then encased 

in newly produced viral capsid proteins and other protein components to form a new integral virus. 

This newly formed virus, with many more, is released from the host cell either by sudden rupture or 

extrusion over time.143 

Forty-five studies identified drugs that may be effective in inhibiting viral 

replication.23,32,35,42,47,67,78,86,104,113,115,122,123,128,138,157,162,171,197,200,204,207,220-222,224,247,283,293,302-316 One study 

employed both in vivo and in vitro methods.104 Seven studies were in vitro,32,35,36,47,67,78,86,115 while two 

were both in vitro and in silico.23,42 Seventeen used in silico methods, 113,123,157,171,207,247,283,293,303-305,307-

311,314 while another 17 had another design.122,128,138,162,197,200,220-222,224,302,306,312,313,315-317 

As both an in vivo and in vitro study, Weston 2020 provided the best level of evidence for this 

mechanism of action.104 The study authors identified clomipramine hydrochloride, fluspirilene, 

gemcitabine hydrochloride, promethazine hydrochloride, terconazole, thiethylperazine maleate, 

toremifene citrate and benzotropine mesylate as potentially having being the most efficacious in terms 

of inhibiting SARS-CoV-2 viral replication.104 

Inhibiting cytopathic response and immune system effects 
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SARS-CoV-2 creates plaque-like cytopathic effects in human airway epithelial (HAE) cells. These effects 

include cell fusion, cell death, destruction of epithelium integrity and cilium (hair) shrinking. Infection 

with SARS-CoV-2 virus (and many other viruses) has been shown to initiate a cytokine storm in some 

individuals. A cytokine storm is a recognised physiological and immunological reaction in which the 

individual’s innate immune system produces an exaggerated and uncontrolled release of pro-

inflammatory molecules termed cytokines, which, in the case of SARS-CoV-2, has led to organ damage. 

The major cytokines included in the release during a storm are interleukins 1 and 6 (IL-1, IL-6), tumour 

necrosis factor alpha (TNF-α) and interferon. These cytokines serve to signal the influx of certain 

immune cells, (namely macrophages, neutrophils and T cells) which, in turn, lead to inflammation and 

cell damage. 

Forty studies identified drugs targeting this mechanism of action. One study used in vivo methods 

only.100 Four studies used a purely in vitro design28,32,38,46 and in silico methods only were used by ten 

studies.123,163,171,172,285,318-322 Mixed designs were used in in the following studies: Zhou 2020a, who used 

a combination of in vivo, in vitro and in silico methods;84 Chen 2020a and Jia 2020, who both used in 

vitro and in silico methods.25,95 The remaining studies were of the following designs: opinion 

piece,118,144,158,199,200,323-331 non-systematic review,108,128,162,219,332,333 letter to the editor,334 and 

Commentary.335 

The top level of evidence was from the two studies that incorporated an in vivo design. The most 

effective drugs identified by the authors of these studies were imipenem (reported by Su 2020) and 

lapatinib (reported by Zhou 2020a).84,100  
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Discussion 

Summary of results 

This review synthesised pre-clinical evidence identifying potential drug candidates for treating SARS-

CoV-2. The results could be useful in highlighting therapeutic candidates to be evaluated in human 

clinical trials. Study author conclusions from the top level of evidence, assessed using DREL criteria, in 

relation to each MoA, suggests that the following drug candidates may be considered as potential 

treatment candidates:  

• Prevention of viral entry into host cells: pixatimod (PG545), haloperidol, panobinostat, 

miglustat, hydroxyzine dihydrochloride, azelastine hydrochloride, pimozide, apatinib 

• Inhibition of the SARS-CoV-2 spike (S) protein from attaching to host cells: nilotinib, 

ingenol, NKH477 (colforsin), osimertinib, trimipramine, nifedipine, ceftazidime, ambroxol 

hydrochloride (AMB), cathepsin L inhibitor, monensin, promethazine 

• Inhibition of SARS-Co-V-2 main protease (Mpro): Pentobarbital, vorinostat (WT-171), 

phenazopyridine 

• Prevention of viral entry into cells via the ACE2 receptor: topetecan 

• Inhibition of viral replication: clomipramine hydrochloride, fluspirilene, gemcitabine 

hydrochloride, promethazine hydrochloride, terconazole, thiethylperazine maleate, 

toremifene citrate and benzotropine mesylate 

• Inhibition of RdRp: homoharringtonine, pralatrexate, rituximab, tilorone 

• Inhibition of the cytopathic effects of SARS-CoV-2: imipenem, lapatinib 

Much of the evidence for the above summary was generated from in silico studies. Two hundred and 

forty-two of the studies included in this review were solely in silico studies. As such, these candidate 

drugs likely need further pre-clinical assessment before assessment of their therapeutic activity within 

clinical trial. However, it is important to note that the effectiveness of many candidate drugs already 

assessed within clinical trials has not reflected the promise of the collated pre-clinical data. Within this 

review there were a greater proportion of studies identifying drugs that may inhibit SARS-CoV-2 main 

protease (Mpro). However, the best available evidence from in-vivo studies, identified drugs for 

preventing viral entry into cells via the ACE2 receptor; inhibition of viral replication, and inhibition of the 

cytopathic effects of SARS-CoV-2. To be effective anti-viral medications identified in this report would 

need administration days after infection before the inflammatory immune response causes tissue 

damage. For many anti-viral drugs this is impractical especially where medication cannot be 

administered orally. 

The following identified points could also plausibly hinder the therapeutic value of candidate drugs 

identified: Poor bioavailability (the rate and extent to which a drug becomes available at its target site); 

Toxicity to humans at the dosages required for effective treatment of SARS-CoV-2; A wide therapeutic 

index (the extent to which the drug has greater therapeutic than toxic effects - potentially making 

chemotherapy drugs unsuitable for treating SARS-CoV-2 patients); risk of resistance (where the body 

may stop responding to the treatment) and drug production costs.  
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Given the above points for consideration some of the drugs identified in the report may be problematic 

for treating newly infected individuals and those with mild disease. For patients admitted to hospital 

with severe SARS-CoV-2, the anti-inflammatory drugs identified in this report may be appropriate; these 

could be administered via IV preparations and narrower thearapeutic index may be acceptable. 

Strengths and limitations of this review 

As far as we are aware, this is the first overview of the development landscape of repurposed medications 

for SARS-CoV-2. 

Where possible, we endeavoured to conduct this review following best-practice systematic review 

principles. For example, we double-screened in a blinded manner at both title and abstract stage and at 

full-text stage to minimise selection bias, a step which is not adopted by up to 40% of rapid reviews.336 

However, due to the review’s rapid nature, elements of best practice as would be utilised in a systematic 

review were omitted. We have been transparent about these and tried to indicate, when plausible, the 

impact this may have had on the findings. For the original review, it took nine weeks from the initial 

team meeting to sharing of the final report. The updated review begun in February 2021 also took nine 

weeks to complete.  

The bibliographic component of our search strategy was not abbreviated. However, due to time 

constraints, we chose not to search for grey literature beyond pre-print repositories and we did not 

perform reference or citation checking. Omitting these components of a non-abbreviated systematic 

searching strategy may have narrowed the scope of our identified records and resulted in some 

potentially relevant studies being missed. However, it has been suggested that abbreviated searches are 

a viable option for conducting rapid syntheses, with the caveat that reviews reliant on such searches may 

have less certainty in their overall results and face a small risk of making an incorrect conclusion.337 They 

indicate that abbreviated searches are more robust in reviews, such as ours, of pharmacological 

interventions and which include 10 or more studies. 

The trajectory of the research surrounding SARS-CoV-2 is currently steep; running the updated search 

in February 2021, five months after the original September 2020 search date, produced a further 1130 

papers to screen and 267 included papers. Given the topical nature of this research area, it is likely that 

further research has been published since completing this review update. It is therefore,  important to 

be aware that if new in vivo studies have been published the best candidates presented according to 

DREL may be outdated compared to those reported in this report. 

As double-blind screening during the original review was completed by reviewers and not topic experts, 

there is some possibility that eligible studies could have been excluded at title and abstract stage 

erroneously. For the initial version of this review, a member of the team with expertise in pharmacy and 

drug development (AW) assessed 10% of the 1,243 records screened at title and abstract stage during 

the original review, given the identified agreement between reviewers less than 7% of the excluded 

studies were likely to have been erroneously excluded. A small proportion of potentially eligible 

candidate drugs could have been missing from our original analyses due to these records being 

erroneously excluded. However, for the updated review we assessed the full text of and subsequently 
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included 120 papers from the original search that did not appear to present any eligible drugs in the 

title and abstract. In addition, two reviewers with a background in pharmacy (SA and FZ) joined the full-

text screening for the updated review. This has helped ensure that we have captured as much of the 

literature and as many of the candidate drugs as possible, when taken together with the original results 

and studies identified by the updated search.  

Data extraction was undertaken by a single reviewer, with a second reviewer checking a small sample of 

extracted data items for consistency. While this is not best practice followed in a full systematic review, 

double blind data extraction is a process often omitted from rapid reviews.336 The Cochrane Rapid Review 

Methods group recommend single data extraction with verification as a pragmatic approach when 

conducting a review of this nature.338 

In the original review, we attempted to extract information regarding the adverse event profile, 

pharmacodynamics and pharmacokinetics of drugs identified by each paper. However, data on these 

were sparse. Given this and the large amount of literature added to the updated review, we took a 

pragmatic decision not to extract these data for every new paper. However, one reviewer (EJ) extracted 

information regarding toxicity in relation to drugs from studies classified as representing the top level 

of evidence for each mechanism of action, where this information was reported (please see Appendix B). 

It was not possible to provide more detailed information regarding the levels of toxicity or the likely 

side-effects of the drugs in this review, since this would depend on the dosage when used in humans 

and this information was not reported in the preclinical studies included in this review. Consequently, 

the toxicity and acceptability of the potential candidate drugs identified in this review would need to be 

considered seperately. In addition, we did not actively seek or extract information regarding the effects 

of the candidate drugs on specific variants of SARS-CoV-2 (e.g. the Kent or South African variants). 

Included studies from the top level of evidence were screened for information regarding the effects of 

identified drugs on  SARS-CoV-2, however, no relevant information was identified (please see appendix 

B). It is possible that that future publications will assess the effects of drugs on covid variants. 

In our original protocol we specified that we would assess risk of bias using the tool developed by the 

Office of Health Assessment and Translation (OHAT) and the internal validity of in silico studies using a 

checklist developed to assess their methodological quality. We deviated from protocol by not 

implementing the OHAT tool or the checklist because we found they were not discriminating between 

studies. However, for rapid reviews, if the purpose is to scope available literature (akin to mapping 

preclinical research on SARS-CoV-2) rather than evaluate specific intervention effects, it is generally 

accepted that risk of bias assessment is not required. Although we did not assess each study for risk of 

bias, we did employ a modification of the DREL criteria to our analyses,18 grading drug repositioning 

candidates according to the level of scientific evidence available. This ensured that our main findings 

were focused on the best level of evidence available.  

Crucially, the results of this rapid review rely on the judgements made within studies by individual study 

authors. We used the study authors’ conclusions to base our assessments of which studied candidate 

drugs were the most effective without harmonising, for example, the thresholds for binding or other 

pertinent parameters that authors were using to identify the most effective candidate drugs. This was a 
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pragmatic approach but does mean that the results should be interpreted with some caution and with 

the other ‘less’ effective candidate drugs indicated by study authors in mind.  

Conclusion 

This rapid review gives an overview of the current drug repositioning studies and level of evidence 

supporting individual drug candidates for the treatment of SARS-CoV-2 from hypothesis driving 

studies through to in vivo studies. We identified 35 therapeutic agents with potentially promising 

therapeutic influence on SARS-CoV-2. These drug candidates were identified from four studies 

involving in vivo components to their design, 20 studies involving in vitro components to their design, 

and one meta-analysis of in vitro studies. None of these therapeutics can be recommended for 

treatment without further well-designed preclinical and clinical research to establish their efficacy. We 

found no evidence for repurposed candidates to treat: pulmonary complications (dyspnoea, acute 

respiratory distress, lung injury, scarring, fibrosis); cardiovascular complications (e.g. oedema, 

hypertension, thrombus); other complications; or rehabilitation (fatigue, continual dyspnoea, 

cardiovascular abnormalities). 
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Appendix A: Search Strategy  
 

Database: SARS-CoV-2-specific COAP Living Evidence on COVID-19 https://ispmbern.github.io/covid-

19/living-review/index.html  

Searched 12 February 2021 

#1         (investigational) or (repurpose) or (repurposing) or (re-purpose) or  (re-purposing) or (reposition) 

or (repositioning) or (re-position) or (re-positioning) or (reprofile) or (reprofiling) or (re-profile) or (re-

profiling) or (off licence) or (off-licence) or (off license) or (off-license) or (unlicenced) or (unlicensed) or 

(off label) or (off-label) 

Database: Embase 1996 to 2021 week 05, searched 12 February 2021 

# Searches 

1 sars coronavirus/ or sars-related coronavirus/ 

2 severe acute respiratory syndrome/ 

3 (coronavir* or corona virus* or HCoV* or ncov* or 2019nCoV or 2019 novel coronavirus or 2019 

novel cov or cov 2 or cov2 or covid or covid19 or covid 19 or sars cov* or sarscov* or Sars coronavirus* 

or Severe Acute Respiratory Syndrome Coronavirus*).mp. 

4 or/1-3 

5 Middle East respiratory syndrome/ 

6 (middle east respiratory syndrome or mers or mers cov or mers coronavirus).mp. 

7 or/5-6 

8 (repurpos* or re purpos* or reposition* or re position* or reprofil* or re-profil* or off licenc* or 

off licens* or unlicen* or off label).mp. 

9 (201911* or 201912* or 2020* or 2021*).dc. 

10 4 and 8 and 9 

11 7 and 8 and 9 

12 10 or 11 

13 limit 8 to covid-19 

14 12 or 13 

Database: Scopus 2019 to February 2021, searched 12 February 2021 

( ( TITLE-ABS-KEY ( coronavirus  OR  "corona virus"  OR  hcov*  OR  ncov*  OR  2019ncov  OR  "2019-

ncov"  OR  "2019 novel coronavirus"  OR  "2019 novel cov"  OR  "2019 novel-cov"  OR  "cov 2"  OR  "cov-

2"  OR  cov2  OR  covid  OR  covid19  OR  "covid 19"  OR  "covid-19" ) )  OR  ( TITLE-ABS-KEY ( "sars 

cov*"  OR  "sars-cov*"  OR  sarscov*  OR  "Sars coronavirus"  OR  "Severe Acute Respiratory Syndrome 

Coronavirus" ) )  OR  ( TITLE-ABS-KEY ( "middle east respiratory syndrome"  OR  mers  OR  "mers cov"  

OR  "mers-cov"  OR  "mers coronavirus"  OR  "mers-coronavirus" ) ) )   
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AND   

( TITLE-ABS-KEY ( repurpos*  OR  "re purpos*"  OR  "re-purpos*"  OR  reposition*  OR  "re position*"  OR  

"re-position*"  OR  reprofil*  OR  "re profil*"  OR  "re-profil*" OR  "off licenc*"  OR  "off-licenc*"  OR  "off 

licens*"  OR  "off-licens*"  OR  unlicen*  OR  "off label"  OR  "off-label" ) )   

AND   

( LIMIT-TO ( PUBYEAR,  2021 )  OR  LIMIT-TO ( PUBYEAR,  2020 )  OR  LIMIT-TO ( PUBYEAR,  2019 ) ) 
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Appendix B: Drug toxicity and potential against SARS-CoV-2 

variants for the studies with the best level of evidence 
 

Paper Drug Toxicity info Variant info 

Viral entry 

Guimond 2020 Pixatimod 

“tolerable safety profile” in patients with 

advanced solid tumors 

 

“Based on these data, pixatimod has 

potent antiviral activity against SARS-CoV-

2 at therapeutically relevant 

concentrations” 

NR 

Le 2020 Haloperidol 

“In particular, three of our four consensus 

drug hits demonstrated antiviral efficacy, 

with haloperidol showing reproducible 

inhibition in Calu-3 cells […] without 

cytotoxicity” 

NR 

Pickard 2021 Panobinostat NR NR 

Rajasekharan 

2020 
Miglustat 

“The activity of Miglustat is here 

demonstrated for SARS-CoV-2 at 

concentrations achievable in the plasma 

by current clinical regimens without 

cytotoxicity” 

NR 

Reznikov 2021 

Hydroxyzine 

dihydrochloride 

“The EC50 values for in vitro antiviral 

activity are above concentrations expected 

in plasma following recommended dosing 

for hydroxyzine” 

NR 

Azelastine 

hydrochloride 

“The azelastine concentrations used in the 

study effectively inhibit SARS-CoV-2 

below prescribed nasal spray doses” 

NR 

Vatansever 2020 Pimozide NR NR 

Wan 2020 Apatinib NR NR 

Surface spike protein 

Cagno 2020 Nilotinib 

“expected concentrations in human lung 

epithelia should be much higher than 

measured EC50 in vitro. In addition, it is 

worth noting that nilotinib has an 

established safety profile for human use at 

therapeutic doses and is relatively well 

tolerated” 

NR 

Chen 2020b 

Ingenol NR NR 

NKH477 (colforsin) NR NR 

Osimertinib 

“We found it to rescue the SARS-CoV-2 

CPE to 60% efficacy, albeit with a narrow 

therapeutic window due to cytotoxicity” 

NR 

Trimipramine NR NR 
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Hsieh 2020 Nifedipine NR NR 

Lin 2020 Ceftazidime 

“The inhibitory concentration (IC50) was 

113.2 μM, which is far below the blood 

concentration (over 300 μM) of 

ceftazidime in patients when clinically 

treated with recommended dose. Notably, 

ceftazidime is a drug clinically used for the 

treatment of pneumonia with minimal side 

effects compared with other antiviral 

drugs.” 

NR 

Olaleye 2020 

Ambroxol 

hydrochloride 

(AMB) 

“inhibited SARS-CoV-2 infection-induced 

cytopathic effect at micromolar 

concentrations” 

“excellent safety and pharmacologic 

profile” 

NR 

Rietdijk 2021 
Cathepsin L 

inhibitor 
NR NR 

Verma 2020 
Monensin NR NR 

Promethazine NR NR 

ACE interaction 

Ho 2020 Topotecan (TPT) 

“Therapeutic treatment with two doses of 

Topotecan (TPT), a FDA-approved Top1 

inhibitor, suppresses infection-induced 

inflammation in hamsters.” Nb: this was 

10mg/kg per dose 

 

“In clinical practice, the Top1 inhibitors 

TPT and Irinotecan have well-

characterized pharmacokinetics and 

toxicity profiles […], albeit in patients 

without SARS-CoV-2 infection. Doses that 

are 5-fold lower than those used in the 

treatment of small-cell lung cancer 

(TPT)[…] and colorectal cancer 

(irinotecan)[…] are expected to cause little 

to no toxicity, and importantly no risk of 

neutropenia. This significant dose 

reduction, together with the wealth of 

clinical experience in the use of TPT and 

irinotecan should reassure us about 

potential concerns over cytotoxicity.” 

NR 

RdRp 

Huang 2020 Homoharringtonine 

“We experimentally confirmed that the 

predicted compounds significantly 

inhibited SARS-CoV-2 replication in Vero 

E6 cells at nanomolar, relatively non-toxic 

concentrations” 

NB: the half-maximal concentration for 

homoharringtonine was 165.7 nM 

NR 
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Li 2021 Rituximab NR NR 

Xiao 2021 Tilorone 

The paper lists drugs that have a safety 

index of >600 – tilorone is not one of 

these drugs 

NR 

Zhang 2020b Pralatrexate “EC50 values of 0.008Μm” NR 

MPRO 

Loganathan 2020 

Pentobarbital 

"reported to have various adverse effects 

hepatotoxicity, laryngospasam, amenia, 

bradycardia and respiratory depression” 

NR 

Vorinostat NR NR 

Penazopyridine NR NR 

Viral replication 

Weston 2020 

Clomipramine 

hydrochloride 

Figures and graphs showing the 

cytotoxicity of the drugs are presented in 

the paper, but the level of toxicity is 

unclear 

NR 

Fluspirilene NR 

Gemcitabine 

hydrochloride 
NR 

Promethazine 

hydrochloride 
NR 

Terconazole NR 

Thiethylperazine 

maleate 
NR 

Toremifene citrate NR 

Benzotropine 

mesylate 
NR 

Cytopathic effects 

Su 2020 Imipenem 

“dose-dependently inhibited TNF-α 

release with the half-maximal inhibitory 

concentration (IC50) as […] 11 μM” 

NR 

Zhou 2020a Lapatinib 

Table 2 suggests potential effects of 

lapatinib at different doses (ranging from 

10 mg to 1500 mg) and predicts their 

Cmax on the brain, heart, lungs, kidneys, 

intestines and liver 

“Further clinical data mining revealed that 

lapatinib has a favorable pharmacokinetic 

profile to ensure that the lapatinib 

concentrations in various tissues can reach 

the levels that are significantly higher than 

the IC50 value after orally taking a lower 

dose of lapatinib” 

NR 
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